Algebra II
Linear algebra and Principal Component Analysis
Principal Component Analysis and Alg II
12h, 6x2h par semaine
. Advances in neural information processing systems 31 (2018).](/media/linguistics/img7_hude7a2977f8ca2250e1035ba20869111c_29471_a55381b4e784bf9086f75e381c8af5d6.webp)
Course
ACP et reduction de dimension.
1. Definitions and notations
2 PCA from 2D to 1D
3 PCA in 3D and more
3.1 Formulation of the problem
3.2 Decomposition of matrices
3.3 Back to PCA and lower rank approximation
4 PCA in practice
4.1 Data preprocessing
4.2 Pseudo code
4.3 Concept of similarity
5 Other Matrix Factorization Methods
6 Preservation of distances
Conclusion
TP / Pratique
TP1. SVD.
TP2. PCA.
TP3. MDS.
TD / Exercices
Coming soon.
References
- R. Bellman. The curse of dimensionality. Princeton. 1961.
- P. Comon. Independent component analysis, a new concept? Signal processing. 1994.
- P. Pentti et U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics. 1994.
- A. J. Bell et T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural computation. 1995.
- A. Hyvärinen et O. Erkki. Independent component analysis: algorithms and applications. Neural networks. 2000.
- J. Mairal, F. Bach et al. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research. 2010.
- F. Pedregosa, G. Varoquaux et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research. 2011.
- C.R. Harris, K.J. Millman et al. Array programming with NumPy. Nature. 2020.